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Electromigration-induced propagation of nonlinear surface waves

R. Mark Bradley
Department of Physics, Colorado State University, Fort Collins, Colorado 80523

~Received 23 August 2001; published 7 February 2002!

Due to the effects of surface electromigration, waves can propagate over the free surface of a current-
carrying metallic or semiconducting film of thicknessh0. In this paper, waves of finite amplitude, and slow
modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their
dispersion relation. If the film material is isotropic, a wave train with wavelengthl is unstable ifl/h0

,3.9027 . . . , and isotherwise marginally stable. The equation of motion for slow modulations of a finite
amplitude, periodic wave train is shown to be the nonlinear Schro¨dinger equation. As a result, envelope
solitons can travel over the film’s surface.
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I. INTRODUCTION

Waves propagating over the free surface of a layer
water subject to gravity have been studied extensively
well over a century. In his ground-breaking paper of 18
Stokes showed that steady periodic wave trains of finite
plitude are possible, and that their dispersion relation
pends upon their amplitude@1#. In these wave trains, th
effects of dispersion and nonlinearity balance, yielding
steady wave form.

In the 1960’s, it was discovered that if the water is
finite depthh0 and the wavelengthl52p/k is sufficiently
short, the wave train is unstable. Benjamin and Feir@2#
showed that the Stokes wave train is unstable to small mo
lational or sideband perturbations ifkh0.1.363 . . . , andthis
been confirmed experimentally@3–6#.

Benjamin and Feir’s analysis holds only at early time
just after the instability has begun to develop. Zakharov@7#
and later Hasimoto and Ono@8# derived an equation of mo
tion for the envelope of a packet of finite-amplitude grav
waves which remains valid long after the onset of the ins
bility. Their equation—the nonlinear Schro¨dinger equation—
admits envelope soliton solutions that are intimately rela
to the ultimate state of the fluid surface.

Although it is not yet widely appreciated, there are no
trivial electrical free boundary problems. When an electric
current passes through a piece of solid metal or semicon
tor, collisions between the conduction electrons and the
oms at the surface lead to drift of these atoms. This phen
enon, which is known as surface electromigration~SEM!,
can cause the surface of a solid to move and deform@9–21#.
The free surface of a conducting film moves in response
the electrical current flowing through the bulk of the film,
much the same way that flow in the bulk of a fluid affects t
motion of its surface. However, the analogy is not perfec
the boundary conditions are very different in the two pro
lems. In addition, metals and semiconductors are anisotr
materials, and this distinguishes them from fluids as wel

Waves can propagate over the free surface of a curr
carrying film deposited on an insulating substrate, at leas
the limit of small amplitude. These waves, whose propa
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tion is induced by surface electromigration, are somew
analogous to gravity waves, and will be called ‘‘SE
waves.’’ The linear dispersion relation for these waves h
been known for some time@15#, and will be discussed briefly
in Sec. III.

It is natural to ask to what extent the nonlinear behav
of gravity waves is paralleled by that of SEM waves. T
address this question, in this paper, I will study SEM wav
of finite amplitude, and slow modulations of these wav
Periodic wave trains of finite amplitude~the analog of the
Stokes wave! are found, as well as their dispersion relatio
If the film material is isotropic, the wave trains are unstab
for kh0.1.609 927 . . . , and areotherwise marginally stable
The equation of motion for slow modulations of the fini
amplitude, periodic wave train is shown to be the nonline
Schrödinger equation.

It is worth mentioning that SEM is not just of academ
interest: In modern integrated circuits, the current-carry
metal lines or ‘‘interconnects’’ carry very high current de
sities, and electrical failure can occur due to the effects
SEM. In particular, SEM can cause a small perturbation
the edge of a metal strip to become a slit-shaped void wh
propagates across the line until its tip contacts the oppo
side of the strip; electrical failure is then complete@20–23#.

II. EQUATIONS OF MOTION

Consider a single-crystal metallic or semiconducting fi
of uniform thicknessh0 deposited on the plane surface of a
insulating substrate. We take thez axis to be normal to the
film-vacuum interface and locate the originO in this plane.
@We will occasionally find it convenient to use another set
Cartesian coordinates (x8,z8) with x85x, z85z1h0, and
origin O8 at the substrate surface.# The film’s surfacez50
will be assumed to be a low-index crystal plane. A const
electrical current flows through the film in thex direction,
and the electric field within the film isEW 05E0x̂.

Now suppose that the upper surface of the film is p
turbed. Let the outward-pointing unit normal to this surfa
be n̂. For simplicity, we shall restrict our attention to pertu
bations whose form does not depend upony, so that the
©2002 The American Physical Society03-1
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R. MARK BRADLEY PHYSICAL REVIEW E 65 036603
height of the film’s surface above the substrateh5h01z
depends only onx andt ~Fig. 1!. The upper film surface will
evolve in the course of time due to the effects of SEM a
surface self diffusion. We assume that the current flow
through the film is held fixed.

Clearly, the problem is two-dimensional~2D!, and the de-
pendence of all quantities ony will therefore be suppressed
The electrical potentialF5F(x,z,t) satisfies the 2D
Laplace equation

¹2F50 ~1!

and is subject to the boundary conditionn̂•¹W F50 on the
upper surface andẑ•¹W F50 on the lower. More explicitly,
we have

Fz~x,z,t !5zxFx~x,z,t ! ~2!

and

Fz~x,2h0 ,t !50, ~3!

where f x[] f /]x and so forth. If the initial perturbation is
localized, we also have

z→0 ~4!

for x→6` and, furthermore,

¹W F~x,z,t !→2EW0 ~5!

for x→6` and2h0<z<0.
We assume that the atomic mobility is negligible at t

film-insulator interface, so that the form of that interface
mains planar for all time. Further, in the interest of simpl
ity, we assume that the applied current is high enough
the effects of SEM are much more important than those
capillarity. The surface atomic currentJWa is then proportional
to the electrical current at the surface. Explicitly,JWa5

2nMq¹W F, where then is the areal density of the mobil
surface atoms,q is their effective charge, andM, the adatom
mobility, in general depends on the surface slopezx . When

FIG. 1. The current-carrying metal thin film. The height of th
free surface above the substrate,h, depends only onx and t. The

outward-pointing unit normal to the free surface isn̂, and the elec-

tric field far from the perturbation isEW 0.
03660
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there is a net influx of atoms into a small surface elemen
will move. The normal velocity of the film’s free surface
vn5qnV]s(M]sF), whereV is the atomic volume ands is
the arc length along the surface. Therefore

z t5qnV]xF M ~zx!

A11zx
2

]xF~x,z,t !G , ~6!

where]x is the total derivative with respect tox. @Sincez
depends on x, we have ]xF(x,z,t)5Fx(x,z,t)
1zxFz(x,z,t), for example.# Together, Eqs.~1!–~6! com-
pletely describe the nonlinear dynamics of the film surfac

III. FINITE AMPLITUDE PERIODIC WAVE TRAINS

We wish to study the propagation of a disturbance wh
amplitude is small. To this end, we putF52E0x1f and
presume thatz andf are of ordere.

We shall suppose that the crystal structure is invari
under the reflectionx→2x, so thatM is an even function of
the slopezx . As a result, M (zx)5M0(11czx

2)1O(e4),
whereM0[M (0) andc is a dimensionless constant whic
vanishes for an isotropic material.

If we work to ordere, the equations of motion are linea
ized and we find that sinusoidal waves of the formz
52a cos(kx2v0t) propagate over the surface.v05v0(k) is
given by the linear dispersion relation

v052bE0

k2

s
, ~7!

whereb[qM0nV ands[tanhkh0 @15#. The corresponding
group velocity is

vg5v0Fh0
2k2S 12

1

s2D12
h0k

s G , ~8!

wherev052bE0 /h0 is the phase velocity of waves of infi
nitely long wavelength. If the amplitude 2a is not a constant
but instead varies slowly with position, the resulting amp
tude modulation will propagate with the group velocity.

The goal of this paper is to go beyond the linear appro
mation and study wave trains of finite amplitude. To beg
we will find the analog of the Stokes wave propagating o
deep water: we will consider the limith0→` and restrict our
attention to periodic wave trains with constant amplitudea.
These simplifying assumptions will be relaxed in the ne
section.

Expandingz andf in powers of the amplitude, we hav

z5@aE1m2a2E 21m3a3E 31•••#1c.c. ~9!

and

f5@n1aekzE1n2a2e2kzE 21n3a3e3kzE 3

1 ñ3a3ekzE1•••#1c.c., ~10!

where E[ei (kx2vt), ‘‘c.c.’’ denotes the complex conjugate
and m2 , m3 , n1 , n2 , n3, and ñ3 are constants to be dete
3-2
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mined. We can takea to be real without loss of generality.v
must depend ona if the appearance of secular terms at t
third order is to be avoided. Again expanding in powers oa,
we have

v5v01a2v21•••, ~11!

wherev052bE0k2 is the linear dispersion relation forh0
→` andv25v2(k).

Our expansion forf satisfies the Laplace equation. Sin
we are seeking a periodic wave train, the boundary con
tions ~4! and ~5! do not apply. Inserting our expansions~9!,
~10!, and ~11! into Eqs.~2! and ~6!, settinga5122c, and
working to third order ina, we obtain

v25bE0S 11
3

2
a2a2D k4, ~12!

m25
1

2
ak, ~13!

m35
1

4
a~2a21!k2, ~14!

n152 iE0 , ~15!

n25 i S 12
1

2
a DE0k, ~16!

n352
1

2
i S 32

7

2
a1a2DE0k2, ~17!

and

ñ35
1

2
i ~3a21!E0k2. ~18!

The nonlinear dispersion relation is

v52bE0k2F12S 11
3

2
a2a2D k2a21•••G . ~19!

For the isotropic casea51, the magnitude of the phase v
locity

vp[
v

k
52bE0kS 12

3

2
k2a21••• D ~20!

is adecreasingfunction ofa whena is small. In contrast, the
phase velocity of small amplitude gravity waves on de
water increases with amplitude. For a given amplitudea,
the phase velocity is smallest fora53/4, or, equivalently, for
c51/8.

The form of the periodic wave train is given by

z52a cos~kx2vt !1aka2 cos 2~kx2vt !

1
1

2
a~2a21!k2a3 cos 3~kx2vt !1•••. ~21!
03660
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To third order ina, the wave is symmetric about the cres
even though the applied electric field breaks the right-
symmetry.

IV. SLOW MODULATION OF FINITE AMPLITUDE
PERIODIC WAVE TRAINS

We will now relax the simplifying assumptions of Sec. II
Supposeh0 is finite and that the amplitude is a slowly vary
ing function of position. We set

z5 (
n52`

`

znEn ~22!

and

f5 (
n52`

`

fnEn, ~23!

whereE[ei (kx2v0t) andv0 is given by the linear dispersion
relation for films of finite thickness, Eq.~7!. Sincez andf
are real,z2n5zn* andf2n5fn* for all n.

Because the amplitude of the wave is of ordere, the co-
efficientszn andfn are of orderen. We may therefore write

zn5(
j 5n

`

e jzn j ~24!

and

fn5(
j 5n

`

e jfn j . ~25!

Heren>0 and thezn j’s andfn j’s do not depend one. Note
as well thatz005f0050 and that thez0 j ’s andf0 j ’s are all
real.

To find a steady, periodic wave train~the analog of the
Stokes wave!, we would take the amplitudeszn j to be con-
stants and thefn j’s to depend onz alone. We will go further,
and allow thezn j’s to vary slowly in space and time a
viewed from the frame of reference moving with the gro
velocity. As a result, we will be able to find the steady, pe
odic wave train and investigate its stability as well.~Our
analysis closely parallels Davey and Stewartson’s treatm
of modulated gravity waves@24#.! To be explicit, we set

zn j5zn j~j,t! ~26!

and

fn j5fn j~j,z,t!, ~27!

where j[e(x2vgt) and t[e2t. The method of multiple
scales will be employed, i.e.,x, j, t, andt will be treated as
independent variables. Using the chain rule, we see that

d

dx
5

]

]x
1e

]

]j
~28!

and
3-3
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d

dt
5

]

]t
2evg

]

]j
1e2

]

]t
. ~29!

We now insert our expansions ford/dx and f into the
Laplace Equation~1!. This results in a series of ordinar
differential equations for thefn j’s. Applying the boundary
condition ~3!, we find that

f115A
coshkz8

coshkh0
, ~30!

f225F
cosh 2kz8

cosh 2kh0
, ~31!

f125G
coshkz8

coshkh0
2 iAj

z8sinhkz8

coshkh0
, ~32!

and

f1352
1

2
Ajj~z8!2

coshkz8

coshkh0
2 iGjz8

sinhkz8

coshkh0
1H

coshkz8

coshkh0
,

~33!

whereA, F, G, andH depend only onj andt. It also follows
that f01 andf02 are functions ofj andt alone, while

]f03

]z
52z8

]2f01

]j2 . ~34!

The next step is quite laborious but is nonethel
straightforward, and so I will omit the details. Inserting o
expansions ford/dx, d/dt, z, and f into Eqs.~2! and ~6!
and working to second order ine, we find that

z0150, ~35!

z115 i
s

E0
A, ~36!

z125 i
s

E0
G1

h0

E0
Aj , ~37!

z2252
k

sE0
2 F12S 12

1

2
a Ds2GA2, ~38!

and

F5
ik

2E0s2 ~11s2!F12S 22
1

2
a Ds2GA2. ~39!

Equating the coefficient ofe3E0 to zero in Eqs.~2! and
~6! yields two linear equations forz02 and]f01/]j. Solving
these forz02, we obtain

z025S sk

E0
2 Dash0k22

vg /v021
uAu2. ~40!

When we equate the coefficient ofe3E1 to zero in Eqs.
~2! and~6!, we obtain two equations that are consistent o
if
03660
s

y

iAt5GAjj1LuAu2A, ~41!

where the constantsG andL are given by

G52
1

2

d2v0

dk2 5
bE0

s S 112sh0k2
vg

v0
D ~42!

and

L5
bk4

sE0
F 2

s2 212a1S 5

2
a2a2Ds2

2S 12s21
s

h0kD2vg /v02ash0k

vg /v021 G . ~43!

Equation~41! is the nonlinear Schro¨dinger equation, and
describes the time development of the amplitude modulat
It has nonlinear plane-wave solutions

A5A0ei (Vt2kj), ~44!

whereA0 andk are constants andV5Gk22LuA0u2. Let us
recast the solution withk50 in terms of the original, physi-
cal variables. Fork50, Eq. ~37! has the solutionz125G
50, and we will specialize to this case. We setseA05
2 iE0a, where a is a real constant of ordere. To second
order ina,

z52a cos~kx2vt !1S k

s D ash0k22

vg /v021
a2

1
2k

s3 F12S 12
1

2
a Ds2Ga2 cos 2~kx2vt !, ~45!

where

v5v01LS E0

s D 2

a2. ~46!

Equation~45! describes a periodic wave train of finite am
plitude propagating over a metal or semiconducting layer
finite thickness. Equation~46! is the nonlinear dispersion re
lation.

In the limit h0k@1, Eq. ~45! becomes

z52a cos~kx2vt !1aka2 cos 2~kx2vt !1
1

2
aka21•••

~47!

and Eq.~46! reduces to Eq.~19!. Equation~47! reduces to
Eq. ~21! after a trivial vertical shift of the origin, and so th
results of this section have the correct thick-film limit.

For h0k!1, Eq. ~45! is

z52a cos~kx2vt !2
2

h0
3k2 a2@12cos 2~kx2vt !#1•••

~48!

where
3-4
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v5v0kS 11
1

3
h0

2k21
2

h0
4k2 a21••• D . ~49!

Equations~48! and ~49! are valid forka!(kh0)3!1. It has
been shown elsewhere@25# that the equation of motion fo
small amplitude, long waves is the Korteweg-de Vries~KdV!
equation

z t52v0zx1
1

3
v0h0

2zxxx12
v0

h0
zzx . ~50!

The KdV equation has finite amplitude, periodic solutio
~cnoidal waves! of the form

z522a14a cn2@p21K~m!~kx2vt !um#, ~51!

where cn is a Jacobian elliptic function,K(m) is the com-
plete elliptic integral of the first kind,

v5v0kF11
4a

3h0
S 2

m
21D G , ~52!

andm is given implicitly by the following relation:

mK2~m!5
2p2a

h0
3k2 . ~53!

Equations~51!–~53! give a good approximate solution to th
original equations of motion in the limit thata/h0 and h0k
tend to zero witha/h0

3k2 remaining finite as the limit is
taken. If the amplitude of the cnoidal wave is small enou
that ka!(kh0)3!1, Eqs.~51! and ~52! reduce to Eqs.~48!
and~49!. Thus, in the thin-film limit, the nonlinear wave~45!
is a cnoidal wave of small amplitude.

The periodic wave train~44! is marginally stable ifGL
<0 but is unstable ifGL.0 @8#. This means that for a given
value ofa, the periodic wave train is unstable ifkh0 exceeds
a critical value we shall denote byxc5xc(a), and is mar-
ginally stable for kh0<xc . The critical value xc
51.609 927 . . . for theisotropic case (a51) and is infinite
for a>2 anda<21/2. Figure 2 is a plot of 1/xc(a) as a

FIG. 2. A plot of 1/xc as a function ofa. xc
21 is zero fora

>2 anda<21/2.
03660
h

function of a. It is intereresting to note that the smalle
value ofxc is obtained for a value ofa differing just slightly
from unity (a50.972 . . . ).

For kh0!1, the productGL is negative, regardless of th
value of a. The periodic wave train is therefore marginal
stable in this limit. This is in accord with the fact that cnoid
waves are marginally stable@26#.

V. CONCLUSIONS

In this paper, the electromigration-induced dynamics
small-amplitude disturbances on a low-index crystal surf
were studied. Periodic wave trains of finite amplitude we
found, as well as their dispersion relation. These wave tra
are unstable forkh0.xc(a), and are otherwise marginall
stable. The value of the parametera depends on the strengt
of the material anisotropy, and is equal to 1 if the anisotro
is negligible. Fora51, xc51.609 927 . . . . For a<21/2
anda>2, on the other hand,xc is infinite and the wave train
is marginally stable no matter what its wavelength.

The equation of motion for slow modulations of the fini
amplitude, periodic wave train was shown to be the non
ear Schro¨dinger equation. As is well known, this equation
exactly solvable for initial conditions that vanish with suffi
cient speed asuxu→` @27#. This exact solution has an num
ber of consequences for electromigration-induced propa
tion of surface waves. Ifkh0.xc(a), a localized initial
wave packet of arbitrary shape will eventually disintegra
into a number of envelope solitons and a small oscillat
tail. These solitons survive collisions with each other with
permanent change except a shift in phase and position.

What are the prospects of an experimental test of
theory developed in this paper? Quite recently, the SE
induced dynamics of metal surfaces of large area have
ceived some attention, but unfortunately these experime
were carried out on polycrystalline films, and so they do n
permit a test of the theory@28,29#.

The experimental situation is more promising in the ca
of semiconductors. A number of beautiful experimental stu
ies of the SEM-induced dynamics of single-crystal silic
films have been carried out, but on initially planar,vicinal
surfaces@9,30#. These studies revealed that a vicinal surfa
is unstable against step bunching for one current direct
and that it is stable for the opposite current direction. Expe
mental studies of the dynamics of perturbed, low-index s
con surfaces that are subject to high electric fields have
yet been carried out.

To test the theory, a singly periodic wave structure co
be etched into a low-index silicon surface. After perturbi
the surface in this way, a high electrical current would
applied parallel to the ripple wave vector. The subsequ
surface dynamics could be imaged by scanning tunne
microscopy, as has already been done for vicinal surface

The analog of the Stokes wave would be obtained
etching many parallel ripples into the wafer surface bef
the application of current. In this way, the amplitude depe
3-5
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dence of the phase velocity could be determined and c
pared with the theoretical prediction. To observe the dev
opment of an envelope soliton~or solitons!, on the other
hand, a few tens or hundreds of ripples would be etched
rt

-

03660
-
l-

to

the film initially. This would produce a ‘‘wave packet’’ tha
would ultimately disintegrate into one or more envelope so
tons and a small oscillatory tail under the action of an a
plied current.
ys.
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