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Electromigration-induced propagation of nonlinear surface waves
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Due to the effects of surface electromigration, waves can propagate over the free surface of a current-
carrying metallic or semiconducting film of thicknelsg. In this paper, waves of finite amplitude, and slow
modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their
dispersion relation. If the film material is isotropic, a wave train with wavelengtis unstable ifA/hg
<3.90Z ..., and isotherwise marginally stable. The equation of motion for slow modulations of a finite
amplitude, periodic wave train is shown to be the nonlinear &tthger equation. As a result, envelope
solitons can travel over the film’s surface.
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[. INTRODUCTION tion is induced by surface electromigration, are somewhat
analogous to gravity waves, and will be called “SEM
Waves propagating over the free surface of a layer ofvaves.” The linear dispersion relation for these waves has
water subject to gravity have been studied extensively fobeen known for some timel5], and will be discussed briefly
well over a century. In his ground-breaking paper of 1847,n Sec. lll.
Stokes showed that steady periodic wave trains of finite am- It is natural to ask to what extent the nonlinear behavior
plitude are possible, and that their dispersion relation de0f gravity waves is paralleled by that of SEM waves. To
pends upon their amplitudil]. In these wave trains, the add.re_ss this question, in this paper, | YVI|| study SEM waves
effects of dispersion and nonlinearity balance, yielding &' finite amplitude, and slow modulations of these waves.
steady wave form. Periodic wave trains of finite amplltuo_l(eht_e anal_og of th_e
In the 1960's, it was discovered that if the water is of Stokes wavgare found, as well as their dispersion relation.

- - . - If the film material is isotropic, the wave trains are unstable
finite depthhy and the wavelength =27/k is sufficiently for khn>1.609 9F and aretherwise marginally stable
short, the wave train is unstable. Benjamin and Heir o - :

h d that the Stok train table t Il mod The equation of motion for slow modulations of the finite
showed that the Stokes wave frain IS unstable to small mo lf'a'mplitude, periodic wave train is shown to be the nonlinear
lational or sideband perturbationskifi,>1.363 . . . , ancthis

; . Schralinger equation.
been confirmed experimentall—6]. , It is worth mentioning that SEM is not just of academic
Benjamin and Feir's analysis holds only at early times

, , - rinterest: In modern integrated circuits, the current-carrying
just after the instability has begun to develop. ZakhdfV et fines or “interconnects” carry very high current den-

and later Hasimoto and Or8] derived an equation of mo- gjties and electrical failure can occur due to the effects of
tion for the envelope of a packet of finite-amplitude gravity ey I particular, SEM can cause a small perturbation at

waves which remains valid long after the onset of the instathe edge of a metal strip to become a slit-shaped void which

bility. Their equation—the nonlinear Schfinger equation— oy aqates across the line until its tip contacts the opposite
admits envelope soliton solutions that are intimately relatedqe of the strip; electrical failure is then compléeo—23.
to the ultimate state of the fluid surface. ’

Although it is not yet widely appreciated, there are non-
trivial electricalfree boundary problems. When an electrical Il. EQUATIONS OF MOTION
current passes through a piece of solid metal or semiconduc- . : . . L
tor, collisions between the conduction electrons and the at- an3|der a single-crystal '.“eta”'c or semiconducting film
oms at the surface lead to drift of these atoms. This phenorﬁ)—f uqurm thicknessn, deposited on the plane surface of an
enon, which is known as surface electromigrat@EM), Insulating substrate. We take tkeaxis to be normal to the

can cause the surface of a solid to move and def@#n21]. film-va_cuum in_terface _and_ locate the orignin this plane.
The free surface of a conducting film moves in response t We will occasionally find it convenient to use another set of
the electrical current flowing through the bulk of the film, in ?‘fFesg‘,” co?]rdlnakt)ea (z) W'fth )e(Thz X%‘I z =z;rh0, inod
much the same way that flow in the bulk of a fluid affects therdin at the substrate sur agelhe film's surfacez=
motion of its surface. However, the analogy is not perfect—WIII bg assumed to be a low-index crystgl plane: A constant
the boundary conditions are very different in the two prob_electrlcal current flows through the fllm in :[hed|rect|on,
lems. In addition, metals and semiconductors are anisotropiend the electric field within the film i&o=Eox.
materials, and this distinguishes them from fluids as well. ~ Now suppose that the upper surface of the film is per-
Waves can propagate over the free surface of a Curreniurbed. Let the Outward-pOIntlng unit normal to this surface
carrying film deposited on an insulating substrate, at least ile n. For simplicity, we shall restrict our attention to pertur-
the limit of small amplitude. These waves, whose propagabations whose form does not depend upgnso that the
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FIG. 1. The current-carrying metal thin film. The height of the

free surface above the substrate,depends only orx andt. The
outward-pointing unit normal to the free surfacenisand the elec-
tric field far from the perturbation iéo.

height of the film’'s surface above the substrate hy+ ¢
depends only ox andt (Fig. 1). The upper film surface will

evolve in the course of time due to the effects of SEM anau
surface self diffusion. We assume that the current flowin

through the film is held fixed.

Clearly, the problem is two-dimension@D), and the de-
pendence of all quantities gnwill therefore be suppressed.
The electrical potential® =®d(x,z,t) satisfies the 2D
Laplace equation

V2h=0 )

and is subject to the boundary conditionVd®=0 on the

upper surface and-V®=0 on the lower. More explicitly,
we have

D,(X,4,) =L Px(X, 1) 2

and

(I)Z(X’_hoat):ol (3)

where f,=gf/dx and so forth. If the initial perturbation is
localized, we also have

{—0 (4)
for x— * o and, furthermore,
Vd(x,z,t)——E (5)

for x— = and —hy=<z=<0.
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there is a net influx of atoms into a small surface element, it
will move. The normal velocity of the film’'s free surface is
v,=qrQdy(MaoP), where() is the atomic volume angis

the arc length along the surface. Therefore

M(£)
——=HD(LY)

V1+Z;

where d, is the total derivative with respect ta [Since ¢
depends on x, we have J,D(X,{,t)=D(X,{,t)
+£,®D,(x,¢,t), for example] Together, Eqs(1)—(6) com-
pletely describe the nonlinear dynamics of the film surface.

{=qvQoy , (6)

Ill. FINITE AMPLITUDE PERIODIC WAVE TRAINS

We wish to study the propagation of a disturbance whose
amplitude is small. To this end, we pdt=—Eyx+ ¢ and
presume that and ¢ are of ordere.

We shall suppose that the crystal structure is invariant
nder the reflectiom— —x, so thatM is an even function of
he slopeZy. As a result, M(Z)=Mqg(1+ci2)+0(e%),

hereM,=M(0) andc is a dimensionless constant which
vanishes for an isotropic material.

If we work to ordere, the equations of motion are linear-
ized and we find that sinusoidal waves of the foim
= 2a coskx—wgt) propagate over the surfaceg= wq(k) is
given by the linear dispersion relation

k2

wo:—ﬁEo;a

(7
where=qMyr{) ando=tanhkh, [15]. The corresponding
group velocity is

hok
+2L},
g

21,2 1
Ug:l)o hok (1_;2 (8)
wherev o= — BEy/hg is the phase velocity of waves of infi-
nitely long wavelength. If the amplitudea2s not a constant
but instead varies slowly with position, the resulting ampli-
tude modulation will propagate with the group velocity.

The goal of this paper is to go beyond the linear approxi-
mation and study wave trains of finite amplitude. To begin,
we will find the analog of the Stokes wave propagating over
deep water: we will consider the limiiyp— o and restrict our
attention to periodic wave trains with constant amplitade
These simplifying assumptions will be relaxed in the next
section.

Expandingl and ¢ in powers of the amplitude, we have

We assume that the atomic mobility is negligible at the

film-insulator interface, so that the form of that interface re- [=[a&+ u,a%E%+ ugales+ .. - +c.c. 9)
mains planar for all time. Further, in the interest of simplic-
ity, we assume that the applied current is high enough thaand
the effects of SEM are much more important than those of

o . .~ . d=[r1a€%E+ v,a%e? 22+ pyadedries
capillarity. The surface atomic curredy is then proportional 1 2 3
to the electrical current at the surface. Explicit@f +7p5a%eK %+ - - ]+c.c., (10)

-vM qﬁ¢, where thev is the areal density of the mobile _
surface atomgj is their effective charge, and, the adatom Where&=e c.c.” denotes the complex conjugate,
mobility, in general depends on the surface slgpeWhen  and w,, ws, vi, va, v3, andv; are constants to be deter-

i (kx—wt)
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mined. We can taka to be real without loss of generality.
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To third order ina, the wave is symmetric about the crests,

must depend om if the appearance of secular terms at theeven though the applied electric field breaks the right-left

third order is to be avoided. Again expanding in powers,of
we have
w=wyt+a’wyt -, (11

where wy= — BEok? is the linear dispersion relation fd,
—0o0 and w,= w,(K).

symmetry.

IV. SLOW MODULATION OF FINITE AMPLITUDE
PERIODIC WAVE TRAINS

We will now relax the simplifying assumptions of Sec. IIl.
Supposéh, is finite and that the amplitude is a slowly vary-

Our expansion fop satisfies the Laplace equation. Sinceing function of position. We set
we are seeking a periodic wave train, the boundary condi-

tions (4) and (5) do not apply. Inserting our expansio(®,
(10), and(11) into Egs.(2) and (6), settinga=1—2c, and
working to third order ina, we obtain

3
w,=BEy| 1+ Ea'—az k4, (12
L k 13
MZ_Ea y ( )
1
M3=Za(2a—1)k2, (14)
V1= _iEo, (15)
) 1
V2:|(1_ EQ’) Eok, (16)
1 7 ) 5
V3=—§I 3—§a+a Eok?, (17
and
- 1
V3=§I(3a—l)Eok2. (18
The nonlinear dispersion relation is
3
w=—BE.k? 1— 1+§a—a2 k?a?+---|. (19

For the isotropic case=1, the magnitude of the phase ve-
locity

vy= o =—BE k(l—§k2az+--~) (20)
Pk 0 2

is adecreasindgunction ofa whena is small. In contrast, the

phase velocity of small amplitude gravity waves on deep

water increases with amplitude. For a given amplitude 2
the phase velocity is smallest far=3/4, or, equivalently, for
c=1/8.

The form of the periodic wave train is given by

{=2acogkx— wt)+ aka’ cos Akx— wt)

1
+5a(2a- 1)k?acosAkx—wt)+---. (21

{= 2 L(E"

n=—o

(22)
and

6= 2 boE", (23
whereE=¢' (=« andw, is given by the linear dispersion
relation for films of finite thickness, Eq7). Since and ¢
are real,{_,=¢; and¢_,= ¢y for all n.

Because the amplitude of the wave is of ordethe co-
efficients¢, and ¢,, are of ordere". We may therefore write

©

gnzz Ejgnj

J]=n

(24)

and

©

¢n:2 EJl(lsnj .

J]=n

(25

Heren=0 and the{,,;’s and ¢,;'s do not depend ok. Note
as well that{oo= =0 and that thely;'s and ¢;’s are all
real.

To find a steady, periodic wave traithe analog of the
Stokes wavg we would take the amplitudes,; to be con-
stants and the,;’s to depend orz alone. We will go further,
and allow the(,;'s to vary slowly in space and time as
viewed from the frame of reference moving with the group
velocity. As a result, we will be able to find the steady, peri-
odic wave train and investigate its stability as welDur
analysis closely parallels Davey and Stewartson’s treatment
of modulated gravity wavel4].) To be explicit, we set

gnjzgnj(gvT) (26)
and
¢nj:¢nj(§lz!7-)v (27)

where {=e(x—v4t) and 7= €’t. The method of multiple
scales will be employed, i.ex, ¢, t, and 7 will be treated as
independent variables. Using the chain rule, we see that

d_a,
dx  ax

d

e (28)

€

and
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d o d d

dt gt Vagz e

(29

We now insert our expansions fal/dx and ¢ into the
Laplace Equation(1). This results in a series of ordinary
differential equations for theb,;’s. Applying the boundary
condition (3), we find that

_Acoshkz’ 30
b11= coshkhy’ (30
F cosh Xz’ 31
¢)22_ COSh Z(ho ’ ( )
_Gcoshkz’ A Z'sinhkz’ 32
127 coshkh, ¢ coshkhg ’ (32)
and
B 2coshkz G2 smhkz T coshkz’
$15= ~ 5 AxlZ) coshkh, ¢ coshkho coshkhy’
(33

whereA, F, G, andH depend only orf and . It also follows
that ¢, and ¢, are functions of and r alone, while

dbos [P oy
9z &%

(34)

The next step is quite laborious but is nonetheless
straightforward, and so | will omit the details. Inserting our

expansions fod/dx, d/dt, £, and ¢ into Egs.(2) and (6)
and working to second order ey we find that

{01=0, (35
T
511:|E_A (36)
.0 ho
{12 |E_OG+ EOAg, (37)
k 1 o] vo
522—_ E2 1- 1—§a g A, (38)
and

2 1 2| a2

= 2E00_2(1+0') 1- Z—EQ o |A”. (39

Equating the coefficient 0é°E° to zero in Egs(2) and
(6) yields two linear equations faf,, andd¢g,/ €. Solving
these fory,, we obtain

ok
Eg

When we equate the coefficient efE* to zero in Egs.

aohgk—2
Ug/UO_ 1

{oo= A% (40)
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iA,=TAg+AlA]PA, (41)
where the constants and A are given by
1 d2w0 BEO
—EW 1+20‘h k——o) (42)
and
— Bk > 2| 2
= E, ?—1—a+ ya—a’lo
1 2vglvg—aohgk 43
o? hok vglvg— 43

Equation(41) is the nonlinear Schringer equation, and
describes the time development of the amplitude modulation.
It has nonlinear plane-wave solutions

A=Age! (7<), (44)
whereA, and k are constants an@ =I"«x?— A|Ay|?. Let us
recast the solution witk =0 in terms of the original, physi-
cal variables. Foik=0, Eq. (37) has the solutionf;,=G
=0, and we will specialize to this case. We setAy,=

—iEga, wherea is a real constant of ordet. To second
order ina,

k

aochgk—2
{=2acogkx— wt)+ = - -

Ug/l)o_l

a.2

2k 1)L,
+? 1- 1—§a o°laccos Akx—wt), (45
where
E
0=wot A| = a2, (46)

Equation(45) describes a periodic wave train of finite am-
plitude propagating over a metal or semiconducting layer of
finite thickness. Equatiof¥6) is the nonlinear dispersion re-
lation.

In the limit hok>1, Eq.(45) becomes

1
{=2acogkx— wt)+ aka®cos Akx— wt) + Eaka2+ e
(47)

and Eq.(46) reduces to Eq(19). Equation(47) reduces to
Eq. (21) after a trivial vertical shift of the origin, and so the
results of this section have the correct thick-film limit.

For hok<1, Eq.(45) is

2
[=2acogkx— wt)— 3k2a2[1 cos Akx— wt)]+

(48)

(2) and(6), we obtain two equations that are consistent only

if

where
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L R B L function of a. It is intereresting to note that the smallest
value ofy, is obtained for a value ot differing just slightly

0.6 .
L . from unity («=0.972...).

051 . Forkhy<<1, the producl’ A is negative, regardless of the

04'_ ] value of @. The periodic wave train is therefore marginally
= [ i stable in this limit. This is in accord with the fact that cnoidal
= 03 - waves are marginally stab[@6].

021 i

ol i V. CONCLUSIONS

In this paper, the electromigration-induced dynamics of
small-amplitude disturbances on a low-index crystal surface
were studied. Periodic wave trains of finite amplitude were

FIG. 2. A plot of 1k, as a function ofa. x. ' is zero fora  found, as well as their dispersion relation. These wave trains
=2 andas<-1/2. are unstable fokhy> x.(«), and are otherwise marginally

stable. The value of the parametedepends on the strength
1,, 2 of the material anisotropy, and is equal to 1 if the anisotropy
0=vok| 1+ ghok™ fazat- - |. 49 is negligible. Fora=1, y.=1.60997 . ... For a<-—1/2
anda=2, on the other hand. is infinite and the wave train
Equations(48) and (49) are valid forka<(khy)3<1. It has is marginally stable no matter what its wavelength.
been shown elsewhef@5] that the equation of motion for The equation of motion for slow modulations of the finite
small amplitude, long waves is the Korteweg-de Vii€dV)  amplitude, periodic wave train was shown to be the nonlin-
equation ear Schrdinger equation. As is well known, this equation is
exactly solvable for initial conditions that vanish with suffi-
L= —volyt %vohégxxx+ 2? zL,. (50) cient speed alx|— [27]. This exact so'lutio'n has an num-

0 ber of consequences for electromigration-induced propaga-
tion of surface waves. Ikhy>y.(a), a localized initial
wave packet of arbitrary shape will eventually disintegrate
into a number of envelope solitons and a small oscillatory

The KdV equation has finite amplitude, periodic solutions
(cnoidal waves of the form

(= —2a+4acrf 7 K (m)(kx— wt)|m], (51) tail. These solitons survive collis_ions with each other' yvith no
permanent change except a shift in phase and position.
where cn is a Jacobian elliptic functio,(m) is the com- What are the prospects of an experimental test of the
plete elliptic integral of the first kind, theory developed in this paper? Quite recently, the SEM-
induced dynamics of metal surfaces of large area have re-
4a [ 2 ceived some attention, but unfortunately these experiments
w=vokl 1+ 3h, 5_1”' (52 \yere carried out on polycrystalline films, and so they do not

permit a test of the theorj28,29.

andm is given implicitly by the following relation: The experimental situation is more promising in the case
of semiconductors. A number of beautiful experimental stud-
ies of the SEM-induced dynamics of single-crystal silicon
films have been carried out, but on initially plansiginal
surfaceq9,30]. These studies revealed that a vicinal surface
Equationg(51)—(53) give a good approximate solution to the is unstable against step bunching for one current direction,
original equations of motion in the limit that/hy andhok  and that it is stable for the opposite current direction. Experi-
tend to zero witha/hgk? remaining finite as the limit is mental studies of the dynamics of perturbed, low-index sili-
taken. If the amplitude of the cnoidal wave is small enoughcon surfaces that are subject to high electric fields have not
thatka<(khg)3<1, Egs.(51) and(52) reduce to Eqs(48) yet been carried out.
and(49). Thus, in the thin-film limit, the nonlinear wavé5) To test the theory, a singly periodic wave structure could
is a cnoidal wave of small amplitude. be etched into a low-index silicon surface. After perturbing

The periodic wave traif44) is marginally stable i’ A the surface in this way, a high electrical current would be
<0 but is unstable if" A>0 [8]. This means that for a given applied parallel to the ripple wave vector. The subsequent
value of, the periodic wave train is unstablekifiy exceeds surface dynamics could be imaged by scanning tunneling
a critical value we shall denote by.= x.(«), and is mar- microscopy, as has already been done for vicinal surfaces.
ginally stable for khy<y.. The critical value x. The analog of the Stokes wave would be obtained by
=1.60997 ... for theisotropic case ¢=1) and is infinite  etching many parallel ripples into the wafer surface before
for a=2 anda=<—1/2. Figure 2 is a plot of }.(«) as a the application of current. In this way, the amplitude depen-

K2 B 2m’a (53
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dence of the phase velocity could be determined and conthe film initially. This would produce a “wave packet” that
pared with the theoretical prediction. To observe the develwould ultimately disintegrate into one or more envelope soli-
opment of an envelope solitofor solitons, on the other tons and a small oscillatory tail under the action of an ap-
hand, a few tens or hundreds of ripples would be etched intplied current.
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